Synthesis and structure analysis of $\left[\left({ }^{(} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{ClO}_{4}$ and its reaction with some nucleophiles

Eunheui Jeong and Young Keun Chung
Department of Chemustry, College of Natural Sctences, Seoul National University Seoul, 151-742 (South Korea)

(Received December 20, 1991)

Abstract

$\left[\left({ }^{(} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3} \mathrm{ClO}_{4},[1] \mathrm{ClO}_{4}\right.$, has been prepared by the reaction of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{ClO}_{4}$ with tert-butyl benzene. Nucleophilic addition to $[1] \mathrm{ClO}_{4}$ has been studied. The crystal structure of [1] ClO_{4} (space group Pbca; unit cell parameters $a=13.489(3), b=10.987(1), c=20.539$ (2) \AA, and $V=3044.1$ (8) $\AA ; R=4.74 \%, R_{\mathrm{w}}=5.83 \%$) has been determined.

Introduction

In recent studies, we and others have established the utility of [(arene)$\left.\mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$cations in difunctionalizing cyclohexadienes by nucleophilic addition to coordinated arenes [1]. The factors influencing the observed regiochemistry of nucleophilic attack are very important and need clarification. Regioselectivity for the addition reaction of nucleophiles to $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{X}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ can generaily be controlled not only by the substituent on the arene but also by the confirmation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ [2]. Factors other than conformational may play a significant and even dominant role. In pursuing the chemistry of organomanganese, we have been very interested in the regiochemistry of [(arene $\left.) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$[3]. To elucidate the possible correlation between the structural features and regiochemistry, [${ }^{\mathrm{t}} \mathrm{BuC}_{6} \mathrm{H}_{5}$)$\left.\mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{X},[1] \mathrm{X}$ has been synthesized and the molecular crystal structure of $[1] \mathrm{ClO}_{4}$ has been determined.

Results and discussion

Compound $\left[\left({ }^{(} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{ClO}_{4},[1] \mathrm{ClO}_{4}$, has been synthesized from $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{ClO}_{4}$ and tert-butyl benzene in methylene chloride [5]. However, there

[^0]Table 1
Crystal data, data collection and refinement of the structure for $\left[\left({ }^{[} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{ClO}_{4}$

Formula	$\mathrm{MnClC}_{13} \mathrm{O}_{7} \mathrm{H}_{14}$
FW	372.65
Space group	$P b c a$
$a(\AA)$	$13.489(3)$
$b(\AA)$	$10.987(1)$
$c(\AA)$	$20.539(2)$
$V\left(\AA^{3}\right)$	$3044.1(8)$
Z	8
$d_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1626
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.08 \times 014 \times 0.16$
$\mu\left(\mathrm{~cm}^{-1}\right)$	9.99
Scan method	$w-2 \theta$
Data collected	$h, k, l, 3<2 \theta<50$
No. total observation	3039
No unıque data $>3 \sigma(I)$	1850
No. parameters refined	213
Abs corr factor range	$0.8931-0.9979$
GOF	0.412
$R=\left(\sum\left\|F_{\mathrm{o}}-F_{\mathrm{c}}\right\|\right) / \sum\left\|F_{\mathrm{o}}\right\|$	0.0474
$R_{\mathrm{w}}=\left(\Sigma\left\|F_{\mathrm{o}}-F_{\mathrm{c}}\right\| w^{1 / 2}\right) / \Sigma\left\|F_{\mathrm{o}}\right\| w^{1 / 2 a}$	0.0583
$a w=1.00 /\left(\sigma^{2}(F)+0.044345 F^{2}\right)$.	

are some problems in obtaining pure [1]X, under refluxing conditions in tert-butyl benzene with AlCl_{3} and $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}$, giving [(1,3-di-tert- $\left.\left.\mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+} \mathrm{X}^{-}$ [6]. The ratio of compound [1]X and [(1,3-di-tert- $\left.\left.\mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{X}$ was varied depending upon the reaction conditions. We have found that the pure compound [1]ClO Cl_{4} is obtained by the reaction of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{ClO}_{4}$ with tert-butyl benzene. Compound $[1] \mathrm{ClO}_{4}$ is stable and can be handled for several hours in air.

Molecular structure of [1]ClO Cl_{4}

The crystallographic data collection and refinement details are summarized in Table 1. Final fractional atomic coordinates with equivalent isotropic parameters are given in Table 2. The geometry of the cation unit showing the atomic numbering scheme used is depicted in Fig. 1 and selected bond distances and angles are given in Table 3. The cation displays the well known piano stool conformation found [7] in half-sandwich complexes with the three carbonyl ligands in a staggered orientation relative to the C atoms of the benzene ring. The carbonyl groups are rotated 25° away from the syn-eclipsed form. The staggered conformation of compound $[1] \mathrm{ClO}_{4}$ appears to arise because of the steric bulk of the tert-butyl group. $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}^{4} \mathrm{Bu}_{2}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ [8] and $\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Si}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]\right.$ $\mathrm{Cr}(\mathrm{CO})_{3}$ [9] have been observed to have similar conformation in which the carbonyl groups are rotated by 44 and 32.5°, respectively, from the syn-eclipsed form.

The least-squares plane of the tert-butyl benzene group is perpendicular to the pseudo C_{3} axis which passes through the center of the ring and the Mn atom. The maximum deviation of any of the 6 ring carbon atoms of this group from the plane is $0.009(5) \AA$. The $\mathrm{Mn}-\mathrm{C}$ (ring) bond lengths range from 2.176 to $2.234 \AA$, average

Table 2
Positional parameters and equivalent isotropic thermal parameters ${ }^{a}$ for $\left[\left({ }^{t} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{ClO}_{4}$

Atom	x	y	z	$U_{\text {cq }}$
Mn	$0.4260(<1)$	-0.3086(1)	$0.1332(<1)$	0.033(1)
C11	0.5385(3)	-0.1622(4)	$01175(2)$	$0.030(2)$
C12	0.4756(4)	-0.1692(4)	$00639(2)$	0.046(3)
C13	$0.3728(4)$	-0.1613(5)	$00717(3)$	0.058(4)
C14	$0.3309(4)$	-0.1481(5)	0 1324(3)	$0059(5)$
C15	0.3922(4)	-0.1418(5)	0.1868(3)	0051(3)
C16	0.4937(4)	-0.1504(4)	0.1790(2)	$0036(2)$
C21	0.6503(4)	-0.1601(4)	$0.1091(2)$	0.043(3)
C31	0.7064(4)	-0.1880(7)	0 1724(3)	$0069(5)$
C32	$06769(6)$	$-0.0304(6)$	$00890(5)$	0093 (8)
C33	0 6849(5)	-0.2500(8)	$00571(3)$	$0077(5)$
C1	0 5224(4)	-0.4092(4)	0.1646(3)	0049 (3)
O1	0.5811(3)	-0.4707(4)	$01845(3)$	0.076(4)
C2	$03984(5)$	-0.4178(5)	0.0690(3)	0.058(4)
O 2	0.3814(5)	-0.4805(4)	$00274(3)$	$0.100(5)$
C3	$03380(4)$	-0.3860(4)	0 1852(3)	0.050 (3)
O3	0.2826(4)	-0.4329(4)	$02180(2)$	0079(3)
CL	0.4648(1)	$0.2323(1)$	0 1343(1)	0.050(1)
O1A	0.4108(3)	$0.3317(5)$	0 1618(3)	0.080(4)
02A	0 5331(4)	0.2775(6)	0.0869(3)	0.099(5)
O3A	0.5207(5)	0.1772(6)	$0.1850(3)$	$0117(6)$
O4A	$04007(6)$	0.1499(6)	0.1034(3)	$0121(7)$
H12	0.5028(4)	-0.1795(4)	00216 (2)	$0063(17)$
H13	$03311(4)$	-0 1651(5)	$0.0344(3)$	$0.090(22)$
H14	0.2610(4)	-0.1433(5)	0.1371(3)	0.089(29)
H15	$03644(4)$	-0.1317(5)	0.2290(3)	$0052(15)$
H16	0.5347(4)	-0.1483(4)	0.2166(2)	$0041(13)$
H311	0.6913(4)	-0.2684(7)	$0.1862(3)$	0 186(314)
H312	0.6869(4)	-01319(7)	0.2051(3)	0.057(16)
H313	0.7757(4)	-0 1811(7)	0.1650(3)	0.103(69)
H321	0.7465(6)	-0.0243(6)	$00831(5)$	0 155(174)
H322	0.6564(6)	0.0247(6)	0.1220(5)	0.495(65)
H323	0 6442(6)	-00110(6)	0.0494(5)	0.059(18)
H331	0.6510(5)	-0.2342(8)	$00175(3)$	0.079(10)
H332	0.6711(5)	-0.3307(8)	0.0710(3)	$0.056(17)$
H333	0.7543(5)	-0.2411(8)	0.0505(3)	$0.130(109)$

${ }^{a}$ Equivalent isotropic $U_{\text {eq }}$ defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
$2.20 \AA$, which is barely significantly shorter than the equivalent distances in related iso-electronic, but neutral, (arene) $\mathrm{Cr}(\mathrm{CO})_{3}$ complexes (typically $2.23 \AA$) [10]; the positive charge on the manganese atom results in a little contraction in the metal-ring distance. The $\mathrm{Mn}-\mathrm{CO}$ bond distance (average $1.82 \AA$) is similar to the $\mathrm{Cr}-\mathrm{CO}$ bond distance (e.g. $1.823 \AA$ in $\left.\left(\mathrm{Et}_{6} \mathrm{C}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right)$ [11]. The angles between $\mathrm{C} 1-\mathrm{Mn}-\mathrm{C} 2, \mathrm{C} 1-\mathrm{Mn}-\mathrm{C} 3, \mathrm{C} 2-\mathrm{Mn}-\mathrm{C} 3$ of $90.1(3), 88.5(2)$ and $89.0(3)^{\circ}$, are all perpendicular to each other. No conclusive evidence of alternating long and short bonds due to coordination is found. However, the arene carbons form two non-equivalent sets; the aromatic $\mathrm{C}-\mathrm{C}$ bonds lying across the metal carbonyls and other aromatic $\mathrm{C}-\mathrm{C}$ bonds. The former aromatic $\mathrm{C}-\mathrm{C}$ bonds are rather longer than those of other aromatic $\mathrm{C}-\mathrm{C}$ bonds.

Table 3
Bond distances (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\left[\left({ }^{t} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right] \mathrm{ClO}_{4}$

$\mathrm{Mn} \cdot \mathrm{C11}$	2.234(4)	C13 ... C14	1.377(9)
$\mathrm{Mn} \cdots \mathrm{Cl2}$	$2.195(5)$	C14... C15	1.392(8)
Mn \cdot C13	2.176(5)	C15 . C 16	$1.382(7)$
Mn \cdots C14	2.181(5)	C21... C31	1.535(8)
Mn \cdots C15	2.186(5)	C21 \cdots C32	$1.526(8)$
Mn \cdots C16	2.176(4)	C21 \cdots C33	$1.529(7)$
$\mathrm{Mn} \cdot \mathrm{Cl}$	1.824(5)	C1 \cdots O1	$1.118(6)$
Mn \cdots C2	1.822(5)	$\mathrm{C} 2 \cdots \mathrm{O} 2$	1.122(7)
Mn \cdots C3	1.809(5)	C3 \cdots O3	$1.130(6)$
$\mathrm{C} 11 \cdots \mathrm{C} 12$	1.393(6)	$\mathrm{Cl} \cdots$ O1A	$1.430(5)$
$\mathrm{C} 11 \cdots \mathrm{Cl} 6$	1.406(6)	$\mathrm{Cl} \cdots$ O2A	1.428(5)
C11... C21	1.518(6)	$\mathrm{Cl} \cdots$ O3A	1.421(5)
C12 - C 13	1.399 (9)	$\mathrm{Cl} \cdots$ O4A	$1.403(6)$
C1-Mn-C11	90.2(2)	C21-C11-C12	121.1(4)
C1-Mn-C12	115.8(2)	C21-C11-C16	121.9(4)
C1-Mn-C13	153.0(2)	C13-C12-C11	120.7(5)
C1-Mn-C14	155.8(2)	C14-C13-C12	121.1(5)
C1-Mn-C15	118.6(2)	C15-C14-C13	119.3(5)
C1-Mn-C16	91.8(2)	C16-C15-C14	119.4(5)
C2-Mn-C11	120.6(2)	C15-C16-C11	122.5(4)
$\mathrm{C} 2-\mathrm{Mn}-\mathrm{C} 12$	93.0(2)	C31-C21-C11	113.0(4)
$\mathrm{C} 2-\mathrm{Mn}-\mathrm{C} 13$	90.1(2)	C32-C21-C11	106.2(4)
C2-Mn-C14	114.0(2)	C32-C21-C31	107.5(6)
C2-Mn-C15	150.9(3)	C33-C21-C11	111.9(4)
C2-Mn-C16	157.6(2)	C33-C21-C31	108.2(5)
$\mathrm{C} 2-\mathrm{Mn}-\mathrm{C} 1$	90.1(3)	C33-C21-C32	110.0(5)
C3-Mn-C11	150.3(2)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Mn}$	179.2(5)
$\mathrm{C} 3-\mathrm{Mn}-\mathrm{C} 12$	155.6(2)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Mn}$	176.6(5)
C3-Mn-C13	118.4(2)	O3-C3-Mn	179.1(5)
C3-Mn-C14	89.9(2)		
C3-Mn-C15	87.7(2)	O2A-Cl-O1A	109.4(4)
C3-Mn-C16	113.3 (2)	O3A-Cl-O1A	107.8(3)
C3-Mn-C1	88.5(2)	O3A-Cl-O2A	107.8(4)
C3-Mn-C2	890 (3)	O4A-Cl-O1A	110.9(4)
C16-C11-C12	1170 (4)	O4A-Cl-O2A	108.4(4)
C21-C11-Mn	134.6(3)	$\mathrm{O} 4 \mathrm{~A}-\mathrm{Cl}-\mathrm{O} 3 \mathrm{~A}$	112.6(5)

Reaction of $[1] \mathrm{ClO}_{4}$ with nucleophiles
Nucleophilic addition to $[1] \mathrm{ClO}_{4}$ in THF or in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ has been studied with several kinds of nucleophiles (Scheme 1 and Table 4).

$R=1 B u$
Scheme 1.

Fig. 1. orter drawing of the cation $\left[\left({ }^{4} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$, with the atom labeling scheme.

The regioselectivities of the nucleophile addition to $[1] \mathrm{ClO}_{4}$ and (${ }^{\mathrm{t}} \mathrm{BuC}_{6} \mathrm{H}_{5}$)$\mathrm{Cr}(\mathrm{CO})_{3}$ in THF were almost the same. For compound $[1] \mathrm{ClO}_{4}$, mixtures of the meta- and para-adduct were obtained for the addition of PhMgBr and $\mathrm{LiCMe}_{2} \mathrm{CN}$, and mixtures of the ortho-, meta- and para-adducts were obtained for the addition of $\mathrm{MeMgBr}, \mathrm{NaBD}_{4}, \mathrm{LiCH}_{2} \mathrm{CO}_{2} \mathrm{CMe}_{3}, \mathrm{LiCH}_{2} \mathrm{CN}$ and $\mathrm{LiCH}_{2} \mathrm{SPh}$. As the size of the nucleophile decreased, we could see an increase in the formation of ortho-adduct. The same trend holds for the nucleophilic addition to ($\left.{ }^{(} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ [12]. For ($\left.{ }^{(} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{CO})_{3}$, mixtures of meta- and para-adducts were obtained for the addition of $\mathrm{LiCMe}_{2} \mathrm{CN}$ and $\mathrm{LiC}\left(\mathrm{OR}^{\prime}\right)(\mathrm{CN}) \mathrm{CH}_{3}$, and mixtures of the ortho-, meta- and para-adducts were obtained for the addition of $\mathrm{LiCH}_{2} \mathrm{SPh}$ and $\mathrm{LiCH}_{2} \mathrm{CN}$. When $\mathrm{LiCMe}_{2} \mathrm{CN}$ was added to $[1] \mathrm{ClO}_{4},\left[\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Si}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right] \mathrm{Mn}-\right.$ $\left.(\mathrm{CO})_{3}\right]_{\mathrm{ClO}}^{4} 4$ [13], and $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}^{4} \mathrm{Bu}_{2}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ [12], a mixture of meta- and paraadduct was obtained in the ratio of $63: 37,46: 54$ and $0: 100$, respectively. It seems

Table 4
Product distribution of nucleophile addition to $\left.\left[{ }^{t} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{M}(\mathrm{CO})_{3}\right]^{n+}(\mathrm{M}=\mathrm{Mn}, n=1 ; \mathrm{M}=\mathrm{Cr}, n=0)$

Nucleophile	Cr complex ${ }^{\text {a }}$				Mn complex ${ }^{\text {b }}$			
	ortho	meta	para	Yield (\%)	ortho	meta	para	Yicld (\%)
$\overline{\mathrm{MeMgBr}}{ }^{\text {c }}$					14	25	61	81
MeMgBr ${ }^{\text {d }}$					27	29	44	86
PhMgBr ${ }^{\text {c }}$					0	36	64	70
PhMgBr ${ }^{\text {d }}$					0	23	77	72
$\mathrm{NaBD}_{4}{ }^{\text {c }}$					61	14.5	24.5	61
$\mathrm{LiCH}_{2} \mathrm{CO}_{2} \mathrm{CMe}_{3}{ }^{c}$					33	30	37	65
$\mathrm{LiCMe}_{2} \mathrm{CN}{ }^{\text {c }}$	0	55	45	78	0	63	37	75
$\mathrm{LiCH}_{2} \mathrm{CN}^{c}$	28	48	24	51	27	30	43	46
$\mathrm{LiCH}_{2} \mathrm{SPh}^{\text {c }}$	45	32	23	88	41	36	23	93
LiC(OR) MeCN ${ }^{\text {c,e }}$	0	35	65	86				

likely that the para-adduct becomes important with large substituents on the arene ligand and primarily at the expense of meta-adduct. In methylene chloride, the para-adduct increases at the expense of meta-adduct for the addition of PhMgBr to $[1] \mathrm{ClO}_{4}$ and the ortho-adduct increases at the expensive of para-adduct for the addition of MeMgBr to $[1] \mathrm{ClO}_{4}$.

It was pointed out that the regioselectivity of attack on the chromium coordinated arene ring should be controlled not only by the substituent on the arene but also by the conformation of the $\mathrm{Cr}(\mathrm{CO})_{3}$ group [2] and the conformation of $\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}[13]$. We might guess that the regioselectivity of nucleophilic addition to $[1] \mathrm{ClO}_{4}$ also relates to the effect of the substituent and the conformation of $\left[\mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$.

It has been demonstrated that the nucleophilic addition to $\left[\left({ }^{\mathrm{t}} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}\right.$ $\left.(\mathrm{CO})_{3}\right]^{+}$is not regioselective, but the regioselectivity of $\left.\left[{ }^{\mathrm{t}} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3}\right]^{+}$is similar to that of $\left[\left({ }^{1} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Cr}(\mathrm{CO})_{3}\right]$.

Experimental

All reactions were performed in an inert atmosphere. All chemicals were of reagent grade from commercial sources and were used without purification. THF was freshly distilled from sodium benzophenone ketyl under nitrogen and methylene dichloride was freshly distilled under nitrogen from calcium hydride. Chemical analysis was performed at the Chemical Analytic Center, College of Engineering, Seoul National University or at the Korea Basic Science Center. Instruments used in this work were a Varian XL-200 NMR spectrometer and a Perkin-Elmer 782 infrared spectrophotometer. Mass spectra were recorded in a VG ZAB-E double-focusing mass spectrometer.

Preparatoon of $\left[\left({ }^{\prime} \mathrm{BuC}_{6} \mathrm{H}_{5}\right) \mathrm{Mn}(\mathrm{CO})_{3} / \mathrm{ClO}_{4},[1] \mathrm{ClO}_{4}\right.$
To a stirred solution of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}(2.74 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ was added $\mathrm{AgClO}_{4}(3.10 \mathrm{~g}, 15 \mathrm{mmol})$ with exclusion of light. After stirring for 3 h , the precipitated AgBr and unreacted AgClO_{4} were filtered off. t -Butyl benzene (13.4 $\mathrm{g}, 100 \mathrm{mmol}$) was added to the solution of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{OClO}_{3}$. The reaction mixture was refluxed for 20 h under nitrogen. The resulting solution was allowed to cool to room temperature and any solids were filtered off. The product (0.373 g) was isolated by concentration of the filtrate, followed by precipitation with diethyl ether. The product is stable in the solid state and soluble in polar organic solvents such as acetone and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (m.p. $\approx 150^{\circ} \mathrm{C}$ dec). ${ }^{1} \mathrm{H}$ NMR (acetone- d_{6}): 6.63-6.37 (m, 5H, Ph); $1.48\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{ppm}$. IR (NaCl): $\nu(\mathrm{CO}) 2070,2020 \mathrm{~cm}^{-1}$. Anal. Found: C, $41.86 ; \mathrm{H}, 3.55 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ClMnO}_{7}$ calc.: $\mathrm{C}, 41.90 ; \mathrm{H}, 3.79 \%$.

Reaction between [1]ClO ${ }_{4}$ and PhMgBr

To a stirred suspension of $[1] \mathrm{ClO}_{4}(0.120 \mathrm{~g}, 0.332 \mathrm{mmol})$ in THF (30 mL) was added 3 equiv. of PhMgBr under nitrogen at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min and then allowed to warm to room temperature. The reaction mixture was poured into water and extracted three times with diethyl ether ($30 \mathrm{~mL} \times 3$). The ether extracts were dried over MgSO_{4}, and evaporated to dryness yielding a yellow product. The crude product was purified by column chromatography on
silica gel using cyclohexane /ether ($4: 1, \mathrm{v} / \mathrm{v}$) as an eluant. The meta- and para-adducts $(0.080 \mathrm{~g}, 70 \%)$ as a yellow crystalline solid were obtained in the ratio of 36:64. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a 72% isolated yield of a mixture of meta- and para-adducts was obtained in the ratio of $23: 77$.

The mixture has the following properties: m.p. $\approx 70^{\circ} \mathrm{C}$. IR $(\mathrm{NaCl}): \nu(\mathrm{CO}) 2000$, $1910 \mathrm{~cm}^{-1}$. Anal. Found: C, $65.60 ; \mathrm{H}, 5.56 . \mathrm{C}_{19} \mathrm{H}_{19} \mathrm{MnO}_{3}$ calc.: C, $65.15 ; \mathrm{H}, 5.47 \%$. ${ }^{1} \mathrm{H}$ NMR data for meta-adduct $\left(\mathrm{CDCl}_{3}\right): \delta 7.61-7.34(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; 5.78(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}) ; 5.0(\mathrm{~m}, 1 \mathrm{H}) ; 3.85(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.5(\mathrm{~m}, 2 \mathrm{H}) ; 1.10\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{ppm}$. para-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 7.22-6.91(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; 5.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.78(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}) ; 3.37$ (dd, $J=5.9,7.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 1.44\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{ppm}$.

Reaction between $[1] \mathrm{ClO}_{4}$ and MeMgBr

In THF, the ortho-, meta- and para-adducts (81%) were obtained as yellow oil in the ratio of $14: 25: 61$. In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, a 86% isolated yield of a mixture of ortho-, meta- and para-adducts was obtained in the ratio of 27:29:44.

The mixture has the following properties: IR (NaCl): $\nu(\mathrm{CO}) 2000,1930 \mathrm{~cm}^{-1}$. EI-MS $m / z: 288\left(M^{+}\right), 273\left(M^{+}-\mathrm{Me}\right), 260\left(M^{+}-\mathrm{CO}\right), 232\left(M^{+}-2 \mathrm{CO}\right), 217$ ($M^{+}-2 \mathrm{CO}-\mathrm{Me}$), $204\left(M^{+}-3 \mathrm{CO}\right) .{ }^{1} \mathrm{H}$ NMR data for ortho-adduct $\left(\mathrm{CDCl}_{3}\right): \delta$ $5.67(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.76\left(\mathrm{~m}, \mathrm{H}^{4}\right) ; 4.67(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.96(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}) ; 2.54(\mathrm{~m}, 1 \mathrm{H}) ; 1.11\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 0.54(\mathrm{~d}, J=5.86 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm}$. meta-adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.77(\mathrm{dt}, J=1.22,4.88 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.76(\mathrm{~m}, 1 \mathrm{H}) ; 3.28(\mathrm{t}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.54(\mathrm{~m}, 1 \mathrm{H}) ; 1.18\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 0.37(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm}$. para-adduct $\left(\mathrm{CDCl}_{3}\right): \delta 4.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.15(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.54(\mathrm{~m}, 1 \mathrm{H}) ; 1.45\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 0.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Me}) \mathrm{ppm}$.

Reaction between $[1] \mathrm{ClO}_{4}$ and $\mathrm{LiCH}_{2} \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}$

To a solution of lithium diisopropylamide (LDA) prepared with ${ }^{n} \mathrm{BuLi}(1.0 \mathrm{~mL}$ of a 2.5 M solution in hexane) and diisopropylamine ($0.33 \mathrm{~mL}, 2.5 \mathrm{mmol}$) in THF $(15 \mathrm{~mL})$, t-butyl acetate $(0.300 \mathrm{~g}, 2.5 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 40 min .

To a suspension of $[1] \mathrm{ClO}_{4}(0.020 \mathrm{~g}, 0.052 \mathrm{mmol})$ in 30 mL of THF at $-78^{\circ} \mathrm{C}$ was added an excess of the lithium enolate described above. After stirring for 30 min , the reaction mixture was allowed to warm to room temperature, poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (40 mL), and extracted with diethyl ether (100 mL). The ether layer was washed with water, dried over MgSO_{4} and concentrated. The crude product was purified by column chromatography on silica gel using cyclohexane/ether ($3: 1, \mathrm{v} / \mathrm{v}$) as an eluant to yield the ortho-, meta- and para-adducts $(0.0125 \mathrm{~g}, 61 \%)$ in the ratio of $33: 30: 37$.

The mixture has the following properties: IR $(\mathrm{NaCl}): \nu(\mathrm{CO}) 2002,1920, \nu\left(\mathrm{CO}_{2}\right)$ $1720 \mathrm{~cm}^{-1}$. EI-MS $m / z: 388\left(M^{+}\right), 332\left(M^{+}-2 \mathrm{CO}\right), 304\left(M^{+}-3 \mathrm{CO}\right), 273$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right)$. ${ }^{1} \mathrm{H}$ NMR data for ortho-adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.66(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}) ; 4.73-4.85(\mathrm{~m}, 1 \mathrm{H}) ; 4.70(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.88-3.69(\mathrm{~m}, 2 \mathrm{H}) ; 1.54$ (d, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 1.09\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{ppm}$. meta-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.77(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.73-4.85(\mathrm{~m}, 1 \mathrm{H}) ; 2.88-3.69(\mathrm{~m}, 3 \mathrm{H}) ; 1.54(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$); $1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 1.16\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ ppm. para-adduct $\left(\mathrm{CDCl}_{3}\right): \delta 4.88(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.88-3.69(\mathrm{~m}, 3 \mathrm{H}) ; 1.54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, CH_{2}); 1.43 (s, 9H, ${ }^{\mathrm{t}} \mathrm{Bu}$); $1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right.$) ppm.

Reaction between $[1] \mathrm{ClO}_{4}$ and $\mathrm{LiCMe}_{2} \mathrm{CN}$

The meta- and para-adducts (75%) were obtained in the ratio of $63: 37$.
The mixture has the following properties: IR (NaCl): $\nu(\mathrm{CO}) 2000,1920, \nu(\mathrm{CN})$ $2240 \mathrm{~cm}^{-1}$. EI-MS $m / z: 313\left(M^{+}-\mathrm{CO}\right.$), $273\left(M^{+}-\mathrm{CO}-\mathrm{CMe}_{2} \mathrm{CN}\right.$), $217\left(M^{+}-\right.$ $\left.\mathrm{CO}-\mathrm{CMe}_{2} \mathrm{CN}-{ }^{\dagger} \mathrm{Bu}\right) .{ }^{1} \mathrm{H}$ NMR data for meta-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.83(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}$) ; 5.05 (dd, $J=5.6,7 \mathrm{~Hz}, 1 \mathrm{H}$); 3.31 (m, 2H); 2.61 (t, $J=5.6 \mathrm{~Hz}$) ppm. para-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.05(\mathrm{~m}, 2 \mathrm{H}) ; 3.33(\mathrm{t}, 2 \mathrm{H}) ; 2.61(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm}$.

Reaction between $[1] \mathrm{ClO}_{4}$ and $\mathrm{LiCH}_{2} \mathrm{CN}$

The ortho-, meta- and para-adducts (46\%) were obtained in the ratio of 27:30:43.

The mixture has the following properties: IR (NaCl): $\nu(\mathrm{CO}) 2000,1915, \nu(\mathrm{CN})$ $2250 \mathrm{~cm}^{-1}$. EI-MS m/z: $313\left(M^{+}\right), 285\left(M^{+}-\mathrm{CO}\right), 273\left(M^{+}-\mathrm{CH}_{2} \mathrm{CN}\right), 257$ ($M^{+}-2 \mathrm{CO}$), 229 ($M^{+}-3 \mathrm{CO}$), $189\left(M^{+}-3 \mathrm{CO}-\mathrm{CH}_{2} \mathrm{CN}\right) .{ }^{1} \mathrm{H}$ NMR data for ortho-adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.73(\mathrm{t}, J=5.37 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.90(\mathrm{~m}, 1 \mathrm{H}) ; 4.84(\mathrm{~d}, J=5.37$ $\mathrm{Hz}, 1 \mathrm{H}$) ; 2.93 (m, 1H); 1.58 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$); 1.11 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$) ppm. meta-adduct (CDCl_{3}): $\delta 5.82(\mathrm{~d}, J=4.88 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.90(\mathrm{~m}, 1 \mathrm{H}) ; 3.17(\mathrm{~m}, 2 \mathrm{H}) ; 2.93$ (m, 1H); 1.58 (d, J=6.3 Hz, 2H, CH_{2}); $1.21\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ ppm. para-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.14(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) ; 2.93(\mathrm{~m}, 1 \mathrm{H}) ; 1.64$ (d, $\left.J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 1.44\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{ppm}$.

Reaction between [1]ClO ${ }_{4}$ and $\mathrm{LiCH}_{2} \mathrm{SPh}$

The ortho-, meta- and para-adducts (93\%) were obtained in the ratio of 41:36:23.

IR (NaCl): $\nu(\mathrm{CO}) 2002,1920 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR data for ortho-adduct $\left(\mathrm{CDCl}_{3}\right): \delta$ $7.38-7.07$ (m, 5H, Ph); $5.65(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.73(\mathrm{~m}, 2 \mathrm{H}) ; 3.01(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 1 H); $2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.44(\mathrm{~m}, 1 \mathrm{H}) ; 1.18$ (s, $9 \mathrm{H},{ }^{\mathbf{t}} \mathrm{Bu}$) ppm. meta-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.07(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; 5.75(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.77(\mathrm{~m}, 1 \mathrm{H}) ; 3.26(\mathrm{~m}$, $2 \mathrm{H}) ; 2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) ; 2.44(\mathrm{~m}, 1 \mathrm{H}) ; 1.26\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ ppm. para-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 7.38-7.07(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ; 4.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) ; 3.14(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2 H) ; 2.84 (m, 2H, CH_{2}); 2.44 (m, 1H); 1.44 (s, $9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}$) ppm.

Reaction between [1]ClO O_{4} and NaBD_{4}
The ortho-, meta- and para-adducts (65%) were obtained as a yellow oil in the ratio of $61: 14: 24$.

The mixture has the following properties: IR $(\mathrm{NaCl}): \nu(\mathrm{CO}) 2000,1915 \mathrm{~cm}^{-1}$. EI-MS $m / z: 275\left(M^{+}\right), 247\left(M^{+}-\mathrm{CO}\right), 219\left(M^{+}-2 \mathrm{CO}\right), 190\left(M^{+}-3 \mathrm{CO}-\mathrm{H}\right)$. ${ }^{1} \mathrm{H}$ NMR data for ortho-adduct $\left(\mathrm{CDCl}_{3}\right): \delta 5.75(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.85(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}$); 4.71 (d, J=5.6 Hz, 1H); $2.88(\mathrm{~m}, 1 \mathrm{H}) ; 2.83(\mathrm{~m}, 1 \mathrm{H}) ; 1.02\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right)$ ppm. meta-Adduct (CDCl_{3}): $\delta 5.90(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 4.77(\mathrm{~m}, 1 \mathrm{H}) ; 2.96(\mathrm{~m}, 1 \mathrm{H})$; $2.70(\mathrm{~m}, 1 \mathrm{H}) ; 1.17\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) \mathrm{ppm}$. para-Adduct $\left(\mathrm{CDCl}_{3}\right): \delta 4.91$ (d, $J=7.3 \mathrm{~Hz}$, 2 H); 2.81 (m, 2H); 2.57 (m, 1H); 1.46 (s, 9H, 'Bu) ppm.

X-Ray diffraction measurements

Yellow, needle-shaped crystals of [1] ClO_{4} were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /diethyl ether. Crystals were sealed in glass capillaries under a nitrogen atmosphere. Intensity data were obtained on a CAD-4 Enraf-Nonius diffractometer with monochromated Mo- K_{α} radiation, using a crystal of dimensions $0.08 \times 0.14 \times 0.16$
mm^{3}. Intensity data were collected in the range $3<2 \theta<50$ using a $\theta-2 \theta$ scan technique. A total of 3039 unique data were collected, and after correction for Lorentz polarization and absorption effects, the 1850 data for which $F>3 \sigma(F)$ were used in all calculations. Absorption correction was made. The structure was solved by heavy atom methods. All non-hydrogen atoms were refined anisotropically. All calculations were done by using the program shelx-76 [4]. Complete lists of thermal parameters and structure factors are available from the authors.

Acknowledgements

The authors are grateful to Dr. Jeong of the KIST for assistance with the X-ray determination. This paper was supported by the Non Directed Research Fund, Korea Research Foundation, 1991.

References

1 W. Lamanna and M. Brookhart, J. Am. Chem. Soc., 103 (1981) 989; M. Brookhart, W. Lamanna and M.B. Humphrey, J. Am. Chem. Soc., 104 (1982) 2117; M. Brookhart, W. Lamanna and A.R. Pinhas, Organometallics, 2 (1983) 649; M. Brookhart and A. Lukas, J. Am. Chem. Soc., 106 (1984) 4161; Y.K. Chung, H.S. Choi, D.A. Sweigart and N.G. Connelly, J. Am. Chem. Soc., 104 (1982) 4245; Y.K. Chung, E.D. Honig, W.T. Robinson, D.A. Sweigart and N.G. Connelly, Organometallics, 2 (1983) 1479; Y.K. Chung, D.A. Sweigart, N.G. Connelly and J.B. Sheridan, J. Am. Chem. Soc., 107 (1985) 2388; Y.K. Chung and D.A. Sweigart, J. Organomet. Chem., 308 (1986) 223; S.D. Ittel, J.F. Whitney, Y.K. Chung, P.G. Williard and D.A. Sweigart, Organometallics, 7 (1988) 1323; T.-H. Hyeon and Y.K. Chung, J. Organomet. Chem., 372 (1989) C12; R.D. Pike, W.J. Ryan, G.B. Carpenter and D.A. Sweigart, J. Am. Chem. Soc., 111 (1989) 8535; R.D. Pike, W.J. Ryan, N.S. Lennhoff, J. Van Epp and D.A. Sweigart, J. Am. Chem. Soc., 112 (1990) 4798.

2 A. Solladie-Cavallo, Polyhedron, 4 (1985) 901; T.A. Albgight and B.K. Carpenter, Inorg. Chem., 19 (1980) 3092.

3 L.H.P. Gommans, L. Main and B.K. Nicholson, J. Organomet. Chem., 284 (1985) 345.
4 G.M. Sheldrick, shelx-76, Program for Crystal Structure Determination, University of Cambridge, Cambridge, UK, 1976.
5 K.K. Bhasin, N.G. Balkeen and P.L. Pauson, J. Organomet. Chem., 204 (1981) C25; A.J. Pearson and I.C. Richards, J. Organomet. Chem., 258 (1983) C41.
6 P.L. Pauson and J.A. Segal, J. Chem. Soc., Dalton Trans., (1975) 1677.
7 A.F. Berndt and R.E. Marsh, Acta Crystallogr., 16 (1963) 118.
8 F. van Meurs and H. van Konigsveld, J. Organomet. Chem., 118 (1976) 295.
9 T.-M. Chung, Y.-A. Lee, Y.K. Chung and I.N. Jung, Organometallics, 9 (1990) 1976.
10 E.L. Muetterties, J R. Bleeke, E.J. Wucherer and T.A. Albright, Chem. Rev., 82 (1982) 499.
11 D.J. Iverson, G. Hunter, J.F. Blount, J.R. Damewood and K. Mislow, J. Am. Chem. Soc., 103 (1981) 6073; G. Hunter, J.F. Blount, J.R. Damewood, D.J. Iverson and K. Mislow, Organometallics, 1 (1982) 448.

12 M.F. Semmelhack, J.L. Garcia, D. Cortes, R. Farina, R. Hong and B.K. Carpenter, Organometallics, 2 (1983) 467.
13 Y.-A. Lee, Y.K. Chung, Y. Kim, J.H. Jeong, G. Chung and D. Lee, Organometallics, 10 (1991) 3707.

[^0]: Correspondence to Dr. Y.K. Chung, Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 151-742, South Korea.

