Journal of Organometallic Chemistry, 434 (1992) 225–233 Elsevier Sequoia S.A., Lausanne JOM 22645

Synthesis and structure analysis of $[({}^{t}BuC_{6}H_{5})Mn(CO)_{3}]ClO_{4}$ and its reaction with some nucleophiles

Eunheui Jeong and Young Keun Chung

Department of Chemistry, College of Natural Sciences, Seoul National University Seoul, 151-742 (South Korea)

(Received December 20, 1991)

Abstract

 $[({}^{1}BuC_{6}H_{5})Mn(CO)_{3}]ClO_{4}$, [1]ClO₄, has been prepared by the reaction of Mn(CO)₅ClO₄ with tert-butyl benzene. Nucleophilic addition to [1]ClO₄ has been studied. The crystal structure of [1]ClO₄ (space group *Pbca*; unit cell parameters a = 13.489(3), b = 10.987(1), c = 20.539(2) Å, and V = 3044.1(8) Å; R = 4.74%, $R_{w} = 5.83\%$) has been determined.

Introduction

In recent studies, we and others have established the utility of $[(\operatorname{arene})-\operatorname{Mn}(\operatorname{CO})_3]^+$ cations in difunctionalizing cyclohexadienes by nucleophilic addition to coordinated arenes [1]. The factors influencing the observed regiochemistry of nucleophilic attack are very important and need clarification. Regioselectivity for the addition reaction of nucleophiles to $(C_6H_5X)Cr(\operatorname{CO})_3$ can generally be controlled not only by the substituent on the arene but also by the confirmation of the $Cr(\operatorname{CO})_3$ [2]. Factors other than conformational may play a significant and even dominant role. In pursuing the chemistry of organomanganese, we have been very interested in the regiochemistry of $[(\operatorname{arene})\operatorname{Mn}(\operatorname{CO})_3]^+$ [3]. To elucidate the possible correlation between the structural features and regiochemistry, $[({}^{t}\operatorname{BuC}_6H_5)-\operatorname{Mn}(\operatorname{CO})_3]X$, [1]X has been synthesized and the molecular crystal structure of [1]ClO₄ has been determined.

Results and discussion

Compound $[({}^{t}BuC_{6}H_{5})Mn(CO)_{3}]ClO_{4}$, $[1]ClO_{4}$, has been synthesized from $Mn(CO)_{5}ClO_{4}$ and tert-butyl benzene in methylene chloride [5]. However, there

Correspondence to Dr. Y.K. Chung, Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 151-742, South Korea.

Table 1

Crystal data, data collection and refinement of the structure for [(¹BuC₆H₅)Mn(CO)₃]ClO₄

Formula	MnClC12O-H14	
FW	372.65	
Space group	Pbca	
a (Å)	13.489(3)	
b (Å)	10.987(1)	
c (Å)	20.539(2)	
$V(Å^3)$	3044.1(8)	
Ζ	8	
$d_{\rm calc} ({\rm g}{\rm cm}^{-3})$	1 626	
Crystal size (mm ³)	$0.08 \times 0.14 \times 0.16$	
μ (cm ⁻¹)	9.99	
Scan method	$w-2\theta$	
Data collected	$h, k, l, 3 < 2\theta < 50$	
No. total observation	3039	
No unique data > $3\sigma(I)$	1850	
No. parameters refined	213	
Abs corr factor range	0.8931-0.9979	
GOF	0.412	
$R = (\sum F_{0} - F_{c}) / \sum F_{0} $	0.0474	
$R_{\rm w} = (\Sigma F_{\rm o} - F_{\rm c} w^{1/2}) / \Sigma F_{\rm o} w^{1/2 a}$	0.0583	
$a w = 1.00 / (\sigma^2(F) + 0.044345F^2).$		

are some problems in obtaining pure [1]X, under refluxing conditions in tert-butyl benzene with AlCl₃ and Mn(CO)₅Br, giving [(1,3-di-tert-Bu-C₆H₄)Mn(CO)₃]⁺ X⁻ [6]. The ratio of compound [1]X and [(1,3-di-tert-Bu-C₆H₄)Mn(CO)₃]X was varied depending upon the reaction conditions. We have found that the pure compound [1]ClO₄ is obtained by the reaction of Mn(CO)₅ClO₄ with tert-butyl benzene. Compound [1]ClO₄ is stable and can be handled for several hours in air.

Molecular structure of [1]ClO₄

The crystallographic data collection and refinement details are summarized in Table 1. Final fractional atomic coordinates with equivalent isotropic parameters are given in Table 2. The geometry of the cation unit showing the atomic numbering scheme used is depicted in Fig. 1 and selected bond distances and angles are given in Table 3. The cation displays the well known piano stool conformation found [7] in half-sandwich complexes with the three carbonyl ligands in a staggered orientation relative to the C atoms of the benzene ring. The carbonyl groups are rotated 25° away from the syn-eclipsed form. The staggered conformation of compound [1]ClO₄ appears to arise because of the steric bulk of the tert-butyl group. ($C_6H_5CH^+Bu_2$)Cr(CO)₃ [8] and [($C_6H_5Si(OCH_2CH_2)_3N$]-Cr(CO)₃ [9] have been observed to have similar conformation in which the carbonyl groups are rotated by 44 and 32.5°, respectively, from the *syn*-eclipsed form.

The least-squares plane of the tert-butyl benzene group is perpendicular to the pseudo C_3 axis which passes through the center of the ring and the Mn atom. The maximum deviation of any of the 6 ring carbon atoms of this group from the plane is 0.009(5) Å. The Mn-C (ring) bond lengths range from 2.176 to 2.234 Å, average

226

Atom	x	у	z	U _{cq}
Mn	0.4260(< 1)	-0.3086(1)	0.1332(< 1)	0.033(1)
C11	0.5385(3)	-0.1622(4)	0 1175(2)	0.030(2)
C12	0.4756(4)	-0.1692(4)	0 0639(2)	0.046(3)
C13	0.3728(4)	-0.1613(5)	0 0717(3)	0.058(4)
C14	0.3309(4)	-0.1481(5)	0 1324(3)	0 059(5)
C15	0.3922(4)	-0.1418(5)	0.1868(3)	0 051(3)
C16	0.4937(4)	-0.1504(4)	0.1790(2)	0 036(2)
C21	0.6503(4)	-0.1601(4)	0.1091(2)	0.043(3)
C31	0.7064(4)	-0.1880(7)	0 1724(3)	0 069(5)
C32	0 6769(6)	-0.0304(6)	0 0890(5)	0 093(8)
C33	0 6849(5)	- 0.2500(8)	0 0571(3)	0 077(5)
C1	0 5224(4)	-0.4092(4)	0.1646(3)	0 049(3)
O1	0.5811(3)	-0.4707(4)	0 1845(3)	0.076(4)
C2	0 3984(5)	-0.4178(5)	0.0690(3)	0.058(4)
O2	0.3814(5)	-0.4805(4)	0 0274(3)	0.100(5)
C3	0 3380(4)	-0.3860(4)	0 1852(3)	0.050(3)
O3	0.2826(4)	-0.4329(4)	0 2180(2)	0 079(3)
CL	0.4648(1)	0.2323(1)	0 1343(1)	0.050(1)
O1A	0.4108(3)	0.3317(5)	0 1618(3)	0.080(4)
O2A	0 5331(4)	0.2775(6)	0.0869(3)	0.099(5)
O3A	0.5207(5)	0.1772(6)	0.1850(3)	0 117(6)
O4A	0 4007(6)	0.1499(6)	0.1034(3)	0 121(7)
H12	0.5028(4)	-0.1795(4)	0 0216(2)	0 063(17)
H13	0 3311(4)	-01651(5)	0.0344(3)	0.090(22)
H14	0.2610(4)	-0.1433(5)	0.1371(3)	0.089(29)
H15	0 3644(4)	-0.1317(5)	0.2290(3)	0 052(15)
H16	0.5347(4)	-0.1483(4)	0.2166(2)	0 041(13)
H311	0.6913(4)	-0.2684(7)	0.1862(3)	0 186(314)
H312	0.6869(4)	-01319(7)	0.2051(3)	0.057(16)
H313	0.7757(4)	-0 1811(7)	0.1650(3)	0.103(69)
H321	0.7465(6)	-0.0243(6)	0 0831(5)	0 155(174)
H322	0.6564(6)	0.0247(6)	0.1220(5)	0.495(65)
H323	0 6442(6)	-0 0110(6)	0.0494(5)	0.059(18)
H331	0.6510(5)	-0.2342(8)	0 0175(3)	0.079(10)
H332	0.6711(5)	- 0.3307(8)	0.0710(3)	0.056(17)
H333	0.7543(5)	-0.2411(8)	0.0505(3)	0.130(109)

Positional parameters and equivalent isotropic thermal parameters " for [('BuC₆H₅)Mn(CO)₃]ClO₄

^a Equivalent isotropic U_{ea} defined as one-third of the trace of the orthogonalized U_{ii} tensor.

2.20 Å, which is barely significantly shorter than the equivalent distances in related iso-electronic, but neutral, (arene)Cr(CO)₃ complexes (typically 2.23 Å) [10]; the positive charge on the manganese atom results in a little contraction in the metal-ring distance. The Mn-CO bond distance (average 1.82 Å) is similar to the Cr-CO bond distance (*e.g.* 1.823 Å in (Et₆C₆)Cr(CO)₃) [11]. The angles between C1-Mn-C2, C1-Mn-C3, C2-Mn-C3 of 90.1(3), 88.5(2) and 89.0(3)°, are all perpendicular to each other. No conclusive evidence of alternating long and short bonds due to coordination is found. However, the arene carbons form two non-equivalent sets; the aromatic C-C bonds lying across the metal carbonyls and other aromatic C-C bonds.

Table	3

228

Bond distances (Å) and bond angles (°) for $[({}^{t}BuC_{6}H_{5})Mn(CO)_{3}]ClO_{4}$

Mn · C11	2.234(4)	C13 · · · C14	1.377(9)
$Mn \cdots C12$	2.195(5)	C14 · · · C15	1.392(8)
Mn · · C13	2.176(5)	C15 · · · C16	1.382(7)
Mn · · · C14	2.181(5)	$C21 \cdots C31$	1.535(8)
Mn · · · C15	2.186(5)	$C21 \cdots C32$	1.526(8)
Mn · · · C16	2.176(4)	C21 · · · C33	1.529(7)
Mn · C1	1.824(5)	C1 · · · O1	1.118(6)
Mn · · · C2	1.822(5)	$C2 \cdots O2$	1.122(7)
Mn · · · C3	1.809(5)	$C3 \cdots O3$	1.130(6)
$C11 \cdots C12$	1.393(6)	Cl····O1A	1.430(5)
C11 · · · C16	1.406(6)	Cl · · · O2A	1.428(5)
$C11 \cdots C21$	1.518(6)	Cl···O3A	1.421(5)
C12 · C13	1.399(9)	Cl · · · O4A	1.403(6)
C1-Mn-C11	90.2(2)	C21-C11-C12	121.1(4)
C1-Mn-C12	115.8(2)	C21-C11-C16	121.9(4)
C1-Mn-C13	153.0(2)	C13-C12-C11	120.7(5)
C1-Mn-C14	155.8(2)	C14-C13-C12	121.1(5)
C1-Mn-C15	118.6(2)	C15-C14-C13	119.3(5)
C1-Mn-C16	91.8(2)	C16-C15-C14	119.4(5)
C2-Mn-C11	120.6(2)	C15-C16-C11	122.5(4)
C2-Mn-C12	93.0(2)	C31-C21-C11	113.0(4)
C2-Mn-C13	90.1(2)	C32-C21-C11	106.2(4)
C2-Mn-C14	114.0(2)	C32-C21-C31	107.5(6)
C2-Mn-C15	150.9(3)	C33-C21-C11	111.9(4)
C2-Mn-C16	157.6(2)	C33-C21-C31	108.2(5)
C2-Mn-C1	90.1(3)	C33-C21-C32	110.0(5)
C3-Mn-C11	150.3(2)	O1-C1-Mn	179.2(5)
C3-Mn-C12	155.6(2)	O2-C2-Mn	176.6(5)
C3-Mn-C13	118.4(2)	O3-C3-Mn	179.1(5)
C3-Mn-C14	89.9(2)		
C3-Mn-C15	87.7(2)	O2A-CI-O1A	109.4(4)
C3-Mn-C16	113.3(2)	O3A-Cl-O1A	107.8(3)
C3-Mn-C1	88.5(2)	O3A-Cl-O2A	107.8(4)
C3-Mn-C2	89 0(3)	O4A-Cl-O1A	110.9(4)
C16-C11-C12	117 0(4)	O4A-Cl-O2A	108.4(4)
C21-C11-Mn	134.6(3)	O4A-CI-O3A	112.6(5)

Reaction of $[1]ClO_4$ with nucleophiles Nucleophilic addition to $[1]ClO_4$ in THF or in CH_2Cl_2 has been studied with several kinds of nucleophiles (Scheme 1 and Table 4).

Fig. 1. ORTEP drawing of the cation $[({}^{t}BuC_{6}H_{5})Mn(CO)_{3}]^{+}$, with the atom labeling scheme.

The regioselectivities of the nucleophile addition to [1]ClO₄ and (^tBuC₆H₅)-Cr(CO)₃ in THF were almost the same. For compound [1]ClO₄, mixtures of the *meta*- and *para*-adduct were obtained for the addition of PhMgBr and LiCMe₂CN, and mixtures of the *ortho*-, *meta*- and *para*-adducts were obtained for the addition of MeMgBr, NaBD₄, LiCH₂CO₂CMe₃, LiCH₂CN and LiCH₂SPh. As the size of the nucleophile decreased, we could see an increase in the formation of *ortho*-adduct. The same trend holds for the nucleophilic addition to (^tBuC₆H₅)Cr(CO)₃ [12]. For (^tBuC₆H₅)Cr(CO)₃, mixtures of *meta*- and *para*-adducts were obtained for the addition of LiCMe₂CN and LiC(OR')(CN)CH₃, and mixtures of the *ortho*-, *meta*- and *para*-adducts were obtained for the addition of LiCMe₂CN was added to [1]ClO₄, [(C₆H₅Si(OCH₂CH₂)₃N)Mn-(CO)₃]ClO₄ [13], and (C₆H₅CH^tBu₂)Cr(CO)₃ [12], a mixture of *meta*- and *para*-adduct was obtained in the ratio of 63:37, 46:54 and 0:100, respectively. It seems

Table 4	
Product distribution of nucleophile addition to $[({}^{t}BuC_{6}H_{5})M(CO)_{3}]^{n+1}$	(M = Mn, n = 1; M = Cr, n = 0)

Nucleophile	Cr complex ^a			Mn complex ^b				
	ortho	meta	para	Yield (%)	ortho	meta	para	Yield (%)
MeMgBr ^c					14	25	61	81
MeMgBr ^d					27	29	44	86
PhMgBr ^c					0	36	64	70
PhMgBr d					0	23	77	72
NaBD ₄ ^c					61	14.5	24.5	61
LiCH ₂ CO ₂ CMe ₃ ^c					33	30	37	65
LICMe ₂ CN ^c	0	55	45	78	0	63	37	75
LiCH 2 CN C	28	48	24	51	27	30	43	46
LiCH ₂ SPh ^c	45	32	23	88	41	36	23	93
LiC(OR)MeCN c,e	0	35	65	86				

^a These are reproduced from ref. 12 for comparison. ^b Isolated yield. ^c In THF. ^d In CH_2Cl_2 ^e R - 1-ethoxyethyl. likely that the *para*-adduct becomes important with large substituents on the arene ligand and primarily at the expense of *meta*-adduct. In methylene chloride, the *para*-adduct increases at the expense of *meta*-adduct for the addition of PhMgBr to [1]ClO₄ and the *ortho*-adduct increases at the expensive of *para*-adduct for the addition of MeMgBr to [1]ClO₄.

It was pointed out that the regioselectivity of attack on the chromium coordinated arene ring should be controlled not only by the substituent on the arene but also by the conformation of the $Cr(CO)_3$ group [2] and the conformation of $[Mn(CO)_3]^+$ [13]. We might guess that the regioselectivity of nucleophilic addition to [1]ClO₄ also relates to the effect of the substituent and the conformation of $[Mn(CO)_3]^+$.

It has been demonstrated that the nucleophilic addition to $[({}^{1}BuC_{6}H_{5})Mn(CO)_{3}]^{+}$ is not regioselective, but the regioselectivity of $[({}^{1}BuC_{6}H_{5})Mn(CO)_{3}]^{+}$ is similar to that of $[({}^{1}BuC_{6}H_{5})Cr(CO)_{3}]$.

Experimental

All reactions were performed in an inert atmosphere. All chemicals were of reagent grade from commercial sources and were used without purification. THF was freshly distilled from sodium benzophenone ketyl under nitrogen and methylene dichloride was freshly distilled under nitrogen from calcium hydride. Chemical analysis was performed at the Chemical Analytic Center, College of Engineering, Seoul National University or at the Korea Basic Science Center. Instruments used in this work were a Varian XL-200 NMR spectrometer and a Perkin-Elmer 782 infrared spectrophotometer. Mass spectra were recorded in a VG ZAB-E double-focusing mass spectrometer.

Preparation of $[({}^{t}BuC_{6}H_{5})Mn(CO)_{3}]ClO_{4}, [1]ClO_{4}$

To a stirred solution of $Mn(CO)_5Br$ (2.74 g, 10 mmol) in CH_2Cl_2 (400 mL) was added AgClO₄ (3.10 g, 15 mmol) with exclusion of light. After stirring for 3 h, the precipitated AgBr and unreacted AgClO₄ were filtered off. t-Butyl benzene (13.4 g, 100 mmol) was added to the solution of $Mn(CO)_5OClO_3$. The reaction mixture was refluxed for 20 h under nitrogen. The resulting solution was allowed to cool to room temperature and any solids were filtered off. The product (0.373 g) was isolated by concentration of the filtrate, followed by precipitation with diethyl ether. The product is stable in the solid state and soluble in polar organic solvents such as acetone and CH_2Cl_2 (m.p. $\approx 150^{\circ}C$ dec). ¹H NMR (acetone- d_6): 6.63–6.37 (m, 5H, Ph); 1.48 (s, 9H, ^tBu) ppm. IR (NaCl): ν (CO) 2070, 2020 cm⁻¹. Anal. Found: C, 41.86; H, 3.55. $C_{13}H_{14}ClMnO_7$ calc.: C, 41.90; H, 3.79%.

Reaction between $[1]ClO_4$ and PhMgBr

To a stirred suspension of [1]ClO₄ (0.120 g, 0.332 mmol) in THF (30 mL) was added 3 equiv. of PhMgBr under nitrogen at 0°C. The reaction mixture was stirred for 30 min and then allowed to warm to room temperature. The reaction mixture was poured into water and extracted three times with diethyl ether (30 mL \times 3). The ether extracts were dried over MgSO₄, and evaporated to dryness yielding a yellow product. The crude product was purified by column chromatography on

silica gel using cyclohexane/ether (4:1, v/v) as an eluant. The *meta*- and *para*-adducts (0.080 g, 70%) as a yellow crystalline solid were obtained in the ratio of 36:64. In CH_2Cl_2 , a 72% isolated yield of a mixture of *meta*- and *para*-adducts was obtained in the ratio of 23:77.

The mixture has the following properties: m.p. $\approx 70^{\circ}$ C. IR (NaCl): ν (CO) 2000, 1910 cm⁻¹. Anal. Found: C, 65.60; H, 5.56. C₁₉H₁₉MnO₃ calc.: C, 65.15; H, 5.47%. ¹H NMR data for *meta*-adduct (CDCl₃): δ 7.61–7.34 (m, 5H, Ph); 5.78 (d, J = 5.9 Hz, 1H); 5.0 (m, 1H); 3.85 (t, J = 5.9 Hz, 1H); 3.5 (m, 2H); 1.10 (s, 9H, 'Bu) ppm. *para*-Adduct (CDCl₃): δ 7.22–6.91 (m, 5H, Ph); 5.03 (d, J = 7.3 Hz, 2H); 3.78 (t, J = 5.9 Hz, 1H); 3.37 (dd, J = 5.9, 7.3 Hz, 2H); 1.44 (s, 9H, 'Bu) ppm.

Reaction between [1]ClO₄ and MeMgBr

In THF, the ortho-, meta- and para-adducts (81%) were obtained as yellow oil in the ratio of 14:25:61. In CH₂Cl₂, a 86% isolated yield of a mixture of ortho-, meta- and para-adducts was obtained in the ratio of 27:29:44.

The mixture has the following properties: IR (NaCl): ν (CO) 2000, 1930 cm⁻¹. EI-MS m/z: 288 (M^+), 273 ($M^+ -$ Me), 260 ($M^+ -$ CO), 232 ($M^+ -$ 2CO), 217 ($M^+ -$ 2CO - Me), 204 ($M^+ -$ 3CO). ¹H NMR data for *ortho*-adduct (CDCl₃): δ 5.67 (t, J = 5.6 Hz, 1H); 4.76 (m, H⁴); 4.67 (d, J = 5.6 Hz, 1H); 2.96 (t, J = 6.1 Hz, 1H); 2.54 (m, 1H); 1.11 (s, 9H, ¹Bu); 0.54 (d, J = 5.86 Hz, 3H, Me) ppm. *meta*-adduct (CDCl₃): δ 5.77 (dt, J = 1.22, 4.88 Hz, 1H); 4.76 (m, 1H); 3.28 (t, J = 6.1 Hz, 1H); 2.98 (d, J = 6.8 Hz, 1H); 2.54 (m, 1H); 1.18 (s, 9H, ¹Bu); 0.37 (d, J = 7.0 Hz, 3H, Me) ppm. *para*-adduct (CDCl₃): δ 4.85 (d, J = 7.0 Hz, 2H); 3.15 (t, J = 6.6 Hz, 2H); 2.54 (m, 1H); 1.45 (s, 9H, ¹Bu); 0.41 (d, J = 6.6 Hz, 3H, Me) ppm.

Reaction between $[1]ClO_4$ and $LiCH_2CO_2'Bu$

To a solution of lithium diisopropylamide (LDA) prepared with ⁿBuLi (1.0 mL of a 2.5 *M* solution in hexane) and diisopropylamine (0.33 mL, 2.5 mmol) in THF (15 mL), t-butyl acetate (0.300 g, 2.5 mmol) was added dropwise at -78° C and the solution was stirred for 40 min.

To a suspension of $[1]ClO_4$ (0.020 g, 0.052 mmol) in 30 mL of THF at $-78^{\circ}C$ was added an excess of the lithium enolate described above. After stirring for 30 min, the reaction mixture was allowed to warm to room temperature, poured into saturated NH₄Cl solution (40 mL), and extracted with diethyl ether (100 mL). The ether layer was washed with water, dried over MgSO₄ and concentrated. The crude product was purified by column chromatography on silica gel using cyclohexane/ether (3:1, v/v) as an eluant to yield the *ortho*-, *meta*- and *para*-adducts (0.0125 g, 61%) in the ratio of 33:30:37.

The mixture has the following properties: IR (NaCl): ν (CO) 2002, 1920, ν (CO₂) 1720 cm⁻¹. EI-MS m/z: 388 (M^+), 332 ($M^+ - 2$ CO), 304 ($M^+ - 3$ CO), 273 ($M^+ - CH_2CO_2^{1}Bu$). ¹H NMR data for *ortho*-adduct (CDCl₃): δ 5.66 (t, J = 5.6 Hz, 1H); 4.73–4.85 (m, 1H); 4.70 (d, J = 5.6 Hz, 1H); 2.88–3.69 (m, 2H); 1.54 (d, J = 7.0 Hz, 2H, CH₂); 1.38 (s, 9H, CO₂¹Bu); 1.09 (s, 9H, ^tBu) ppm. *meta*-Adduct (CDCl₃): δ 5.77 (d, J = 5.4 Hz, 1H); 4.73–4.85 (m, 1H); 2.88–3.69 (m, 3H); 1.54 (d, J = 7.0 Hz, 2H, CH₂); 1.40 (s, 9H, CO₂^tBu); 1.16 (s, 9H, ^tBu) ppm. *para*-adduct (CDCl₃): δ 4.88 (d, J = 7.3 Hz, 2H); 2.88–3.69 (m, 3H); 1.54 (d, J = 7.0 Hz, 2H, CH₂); 1.40 (s, 9H, CO₂^tBu); 1.16 (s, 9H, ^tBu) ppm. *para*-adduct (CDCl₃): δ 4.88 (d, J = 7.3 Hz, 2H); 2.88–3.69 (m, 3H); 1.54 (d, J = 7.0 Hz, 2H, CH₂); 1.40 (s, 9H, CO₂^tBu) ppm.

Reaction between $[1]ClO_4$ and LiCMe₂CN

The meta- and para-adducts (75%) were obtained in the ratio of 63:37.

The mixture has the following properties: IR (NaCl): ν (CO) 2000, 1920, ν (CN) 2240 cm⁻¹. EI-MS m/z: 313 (M^+ - CO), 273 (M^+ - CO - CMe₂CN), 217 (M^+ - CO - CMe₂CN - ^tBu). ¹H NMR data for *meta*-Adduct (CDCl₃): δ 5.83 (d, J = 5.6 Hz, 1H); 5.05 (dd, J = 5.6, 7 Hz, 1H); 3.31 (m, 2H); 2.61 (t, J = 5.6 Hz) ppm. *para*-Adduct (CDCl₃): δ 5.05 (m, 2H); 3.33 (t, 2H); 2.61 (m, 1H) ppm.

Reaction between $[1]ClO_4$ and LiCH₂CN

The ortho-, meta- and para-adducts (46%) were obtained in the ratio of 27:30:43.

The mixture has the following properties: IR (NaCl): ν (CO) 2000, 1915, ν (CN) 2250 cm⁻¹. EI-MS m/z: 313 (M^+), 285 (M^+ - CO), 273 (M^+ - CH₂CN), 257 (M^+ - 2CO), 229 (M^+ - 3CO), 189 (M^+ - 3CO - CH₂CN). ¹H NMR data for ortho-adduct (CDCl₃): δ 5.73 (t, J = 5.37 Hz, 1H); 4.90 (m, 1H); 4.84 (d, J = 5.37 Hz, 1H); 2.93 (m, 1H); 1.58 (d, J = 6.3 Hz, 2H, CH₂); 1.11 (s, 9H, ^tBu) ppm. meta-adduct (CDCl₃): δ 5.82 (d, J = 4.88 Hz, 1H); 4.90 (m, 1H); 3.17 (m, 2H); 2.93 (m, 1H); 1.58 (d, J = 6.3 Hz, 2H, CH₂); 1.21 (s, 9H, ^tBu) ppm. para-Adduct (CDCl₃): δ 5.00 (d, J = 6.6 Hz, 2H); 3.14 (t, J = 6.6 Hz, 2H); 2.93 (m, 1H); 1.64 (d, J = 6.3 Hz, 2H, CH₂); 1.44 (s, 9H, ^tBu) ppm.

Reaction between $[1]ClO_4$ and LiCH₂SPh

The ortho-, meta- and para-adducts (93%) were obtained in the ratio of 41:36:23.

IR (NaCl): ν (CO) 2002, 1920 cm⁻¹. ¹H NMR data for *ortho*-adduct (CDCl₃): δ 7.38–7.07 (m, 5H, Ph); 5.65 (t, J = 6.1 Hz, 1H); 4.73 (m, 2H); 3.01 (t, J = 6.6 Hz, 1H); 2.84 (m, 2H, CH₂); 2.44 (m, 1H); 1.18 (s, 9H, ¹Bu) ppm. *meta*-Adduct (CDCl₃): δ 7.38–7.07 (m, 5H, Ph); 5.75 (d, J = 5.1 Hz, 1H); 4.77 (m, 1H); 3.26 (m, 2H); 2.84 (m, 2H, CH₂); 2.44 (m, 1H); 1.26 (s, 9H, ¹Bu) ppm. *para*-Adduct (CDCl₃): δ 7.38–7.07 (m, 5H, Ph); 4.85 (d, J = 7.1 Hz, 2H); 3.14 (t, J = 6.6 Hz, 2H); 2.84 (m, 2H, CH₂); 2.44 (m, 1H); 1.44 (s, 9H, ¹Bu) ppm.

Reaction between $[1]ClO_4$ and NaBD₄

The ortho-, meta- and para-adducts (65%) were obtained as a yellow oil in the ratio of 61:14:24.

The mixture has the following properties: IR (NaCl): ν (CO) 2000, 1915 cm⁻¹. EI-MS m/z: 275 (M^+), 247 (M^+ - CO), 219 (M^+ - 2CO), 190 (M^+ - 3CO - H). ¹H NMR data for *ortho*-adduct (CDCl₃): δ 5.75 (t, J = 5.6 Hz, 1H); 4.85 (t, J = 5.6 Hz, 1H); 4.71 (d, J = 5.6 Hz, 1H); 2.88 (m, 1H); 2.83 (m, 1H); 1.02 (s, 9H, 'Bu) ppm. *meta*-Adduct (CDCl₃): δ 5.90 (d, J = 5.6 Hz, 1H); 4.77 (m, 1H); 2.96 (m, 1H); 2.70 (m, 1H); 1.17 (s, 9H, 'Bu) ppm. *para*-Adduct (CDCl₃): δ 4.91 (d, J = 7.3 Hz, 2H); 2.81 (m, 2H); 2.57 (m, 1H); 1.46 (s, 9H, 'Bu) ppm.

X-Ray diffraction measurements

Yellow, needle-shaped crystals of $[1]ClO_4$ were obtained from $CH_2Cl_2/diethyl$ ether. Crystals were sealed in glass capillaries under a nitrogen atmosphere. Intensity data were obtained on a CAD-4 Enraf-Nonius diffractometer with monochromated Mo- K_{α} radiation, using a crystal of dimensions $0.08 \times 0.14 \times 0.16$

mm³. Intensity data were collected in the range $3 < 2\theta < 50$ using a $\theta - 2\theta$ scan technique. A total of 3039 unique data were collected, and after correction for Lorentz polarization and absorption effects, the 1850 data for which $F > 3\sigma(F)$ were used in all calculations. Absorption correction was made. The structure was solved by heavy atom methods. All non-hydrogen atoms were refined anisotropically. All calculations were done by using the program SHELX-76 [4]. Complete lists of thermal parameters and structure factors are available from the authors.

Acknowledgements

The authors are grateful to Dr. Jeong of the KIST for assistance with the X-ray determination. This paper was supported by the Non Directed Research Fund, Korea Research Foundation, 1991.

References

- W. Lamanna and M. Brookhart, J. Am. Chem. Soc., 103 (1981) 989; M. Brookhart, W. Lamanna and M.B. Humphrey, J. Am. Chem. Soc., 104 (1982) 2117; M. Brookhart, W. Lamanna and A.R. Pinhas, Organometallics, 2 (1983) 649; M. Brookhart and A. Lukas, J. Am. Chem. Soc., 106 (1984) 4161; Y.K. Chung, H.S. Choi, D.A. Sweigart and N.G. Connelly, J. Am. Chem. Soc., 104 (1982) 4245; Y.K. Chung, E.D. Honig, W.T. Robinson, D.A. Sweigart and N.G. Connelly, Organometallics, 2 (1983) 1479; Y.K. Chung, D.A. Sweigart, N.G. Connelly and J.B. Sheridan, J. Am. Chem. Soc., 107 (1985) 2388; Y.K. Chung and D.A. Sweigart, J. Organomet. Chem., 308 (1986) 223; S.D. Ittel, J.F. Whitney, Y.K. Chung, P.G. Williard and D.A. Sweigart, Organometallics, 7 (1988) 1323; T.-H. Hyeon and Y.K. Chung, J. Organomet. Chem., 372 (1989) C12; R.D. Pike, W.J. Ryan, G.B. Carpenter and D.A. Sweigart, J. Am. Chem. Soc., 111 (1989) 8535; R.D. Pike, W.J. Ryan, N.S. Lennhoff, J. Van Epp and D.A. Sweigart, J. Am. Chem. Soc., 112 (1990) 4798.
- 2 A. Solladie-Cavallo, Polyhedron, 4 (1985) 901; T.A. Albgight and B.K. Carpenter, Inorg. Chem., 19 (1980) 3092.
- 3 L.H.P. Gommans, L. Main and B.K. Nicholson, J. Organomet. Chem., 284 (1985) 345.
- 4 G.M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, University of Cambridge, Cambridge, UK, 1976.
- 5 K.K. Bhasin, N.G. Balkeen and P.L. Pauson, J. Organomet. Chem., 204 (1981) C25; A.J. Pearson and I.C. Richards, J. Organomet. Chem., 258 (1983) C41.
- 6 P.L. Pauson and J.A. Segal, J. Chem. Soc., Dalton Trans., (1975) 1677.
- 7 A.F. Berndt and R.E. Marsh, Acta Crystallogr., 16 (1963) 118.
- 8 F. van Meurs and H. van Konigsveld, J. Organomet. Chem., 118 (1976) 295.
- 9 T.-M. Chung, Y.-A. Lee, Y.K. Chung and I.N. Jung, Organometallics, 9 (1990) 1976.
- 10 E.L. Muetterties, J R. Bleeke, E.J. Wucherer and T.A. Albright, Chem. Rev., 82 (1982) 499.
- 11 D.J. Iverson, G. Hunter, J.F. Blount, J.R. Damewood and K. Mislow, J. Am. Chem. Soc., 103 (1981) 6073; G. Hunter, J.F. Blount, J.R. Damewood, D.J. Iverson and K. Mislow, Organometallics, 1 (1982) 448.
- 12 M.F. Semmelhack, J.L. Garcia, D. Cortes, R. Farina, R. Hong and B.K. Carpenter, Organometallics, 2 (1983) 467.
- 13 Y.-A. Lee, Y.K. Chung, Y. Kim, J.H. Jeong, G. Chung and D. Lee, Organometallics, 10 (1991) 3707.